О  продолжительности  и  климатических  параметрах  охладительного  периода  (2)
  Стройматериалы
  Оборудование
  Технологии
  Инструмент
  Предложения строителей
  Как попасть на сайт
  К началу

 
 Новости строительства

8.11.2018
В Москве прошел внеочередной съезд СРО строительства

III (внеочередной) Всероссийский съезд саморегулируемых организаций (СРО), осуществляющих строительство, реконструкцию, капитальный ремонт объектов ка...

5.11.2018
Безотходное строительство внедрят в Самаре

Власти города Самары приступают к рассмотрению документов обязательной переработки отходов строительства и сноса зданий, что поможет решить городу мно...

17.11.2018
Метро и автомобили в одном «флаконе»

  «Мосметрострой» завершил проходку второго тоннеля под Серебряным бором. Как рассказали в пресс-службе столичной подземки, этот проект уни...

10.11.2018
Четверть миллиона "квадратов" жилья в Санкт-Петербурге станут энергоэффективными

В рамках III Петербургского Международного инвестиционного форума подписан протокол о намерениях реализации проекта по повышению энергетической эффект...

 

 
 Популярные статьи


 

 
 В помощь снабженцу
 

 

Яндекс.Метрика

 

 О  продолжительности  и  климатических  параметрах  охладительного  периода  (2)

   Принимая нормальный закон распределения срочной наружной температуры по обеспеченности [5] и пользуясь методами теории вероятностей, можно для каждого значения tср вычислить величину среднего квадратического отклонения tн (СКО), при которой показанная на рис.1 зависимость получается автоматически с использованием необходимых формул. В частности, для Москвы уровень СКО составляет около 10,1°, т.е. величину того же порядка, что и амплитуда годового хода температуры (в Москве – 12,7°).

   О  продолжительности  и  климатических  параметрах  охладительного  периода  (2)

   При этом оказывается, что с ростом tср значение СКО (s) несколько уменьшается, что может быть выражено следующей ориентировочной зависимостью:

s = 11,8 – 0,2tср, °С. (3)

Данный факт объясняется тем обстоятельством, что в районах с более теплым климатом колебания наружной температуры всегда будут менее выраженными. Более того, величина СКО, рассчитанная для теплого периода года, оказывается меньше, чем для холодного [5], т.е. функция распределения tн на самом деле не совсем симметрична относительно tср. Это тоже объяснимо, поскольку летом обычно не бывает таких резких изменений температуры, которые характерны для зимних условий. Поэтому нормальный закон распределения для tн можно применять только с некоторым приближением.

   О  продолжительности  и  климатических  параметрах  охладительного  периода  (2)

Принимая теперь значение внутренней температуры в помещении в теплый период года, а значит, и минимальный уровень наружной температуры, служащий для определения начала и конца охладительного периода, равным +22° (по рекомендации [6]), с использованием (3) можно найти зависимость zохл (в сутках) от величины tср. График этой зависимости приведен на рис.2 (верхняя линия). Как видно из графика, с ростом tср охладительный период удлиняется, причем эта зависимость близка к параболической. С некоторым приближением она может быть описана следующей формулой:

Zохл = 14 + 1,5tср + 0,17t2ср, сут. (4)

Необходимо только заметить, что все значения, соответствующие этой линии, показаны увеличенными в 10 раз для удобства комбинации со вторым графиком, изображающим параметр ГСОПх. В частности, для Москвы при среднегодовой температуре +4° находим продолжительность охладительного периода в 22,7 сут. Более точные данные, определяемые непосредственно по многолетним наблюдениям [6], дают величину 22 сут, что почти не отличается от значения, приведенного на рис.2, поэтому для практических целей точность полученного результата вполне достаточна.

Библиографический список:
1. Строительные нормы и правила. СНиП 23-01-99 “Строительная климатология”. – М., ГУП ЦПП, 2000.
2. Строительные нормы и правила. СНиП 2.04.05-91* “Отопление, вентиляция и кондиционирование”. – М., ГУП ЦПП, 1998.
3. Самарин О.Д. О взаимосвязи расчетных параметров наружного климата // Строительные материалы, оборудование, технологии XXI века. № 2. 2001. С. 34 – 35.
4. Самарин О.Д. О продолжительности и климатических параметрах отопительного сезона //Строительные материалы, оборудование, технологии XXI века. №4. 2001.
С.24 – 25.
5. Самарин О.Д. О вероятностно-статистическом моделировании взаимосвязи расчетных параметров наружного климата (Сб. докл. конф. НИИСФ, 2001, с.312 – 318).
6. Технология оптимизации расхода энергии вновь возводимых и реконструируемых зданий. Отчет о НИР по теме 6.16.2. / Климова Г.К., Богословский В.Н. Раздел II. М., НИИСФ, 1998. С. 39 – 51.

   Окончание следует.

  О.Д. Самарин